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Observation of the tumbling instability in torsional shear flow of a 
nematic liquid crystal with a3 > 0 

by T. CARLSSON and K. SKARP 
Institute of Theoretical Physics and Physics Department, 

Chalmers University of Technology, S-412 96 Goteborg, Sweden 

(Received 3 March 1986; accepted 30 June 1986) 

The shear flow behaviour of the nematic liquid crystal 4-n-octyl-4’-cyano- 
biphenyl (8CB) was studied in a torsional shear flow apparatus. Experiments were 
performed near the smectic A-nematic phase transition, and they concentrated on 
the observation of the tumbling instability associated with a positive Leslie viscosity 
a3. From theoretical considerations presented here this instability is expected to 
occur for rather small director tilts when a3 & la2(. Furthermore a functional 
dependence of the tumbling instability threshold on the parameter a3/la21 is 
presented and evaluated experimentally for the nematic 8CB. Good agreement is 
found between these theoretical results from the Leslie-Ericksen continuum theory 
and the experimental measurements. 

1. Introduction 
The study of the dynamical properties of nematic liquid crystals started in the 

1920s with attempts by Oseen [1] and Anzelius [2] to develop a hydrodynamical theory 
of nematics. It was, however, not until after the work by Ericksen [3] and Leslie [4,5] 
some 30 years later that a useful hydrodynamical continuum theory of nematics was 
presented. Leslie showed that for a complete description of the flow properties of 
nematics six viscosity coefficients are needed. These are commonly denoted by c1, 

( i  = 1-6). Later Parodi [6] showed by an Onsager relation that out of the six Leslie 
coefficients four are linearly dependent, still leaving five viscosity coefficients for the 
experimentalist to determine. 

In order to discuss the qualitative features of nematic flows however only two of 
the six Leslie viscosities are of importance; these are a2 and ct3 [7]. For rod-like 
nematics a2 is found to be always negative while t13 can adopt both positive or negative 
values. For disc-like nematics on the other hand a2 is also expected to be positive [8,9]. 
We shall deal exclusively with rod-like nematics throughout this paper. The flow 
behaviour of the system is divided into two cases depending on the sign of a3. In order 
to discuss these two flow regimes, let us focus our attention to the experimental 
situation of simple shear flow which is pictured in figure 1. The liquid crystal is 
confined between two glass plates, distance d apart, both parallel to the xy plane. The 
lower plate is at rest while the upper one is moving with the velocity vo in the x 
direction. The director is characterized by the polar angles f3 and cp shown in the 
figure. 

The case of negative t13 leads to the well-known situation of flow alignment, i.e. the 
director will everywhere in the bulk of the sample (for large enough shearing rates) 
adopt a forward angle to the normal to the plates given by arctan J(tl2/ct3), still being 
within the plane of shear (cp = 0). Only in two thin boundary layers will the director 
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456 T. Carlsson and K. Skarp 

Figure 1. The geometry of the shear flow problem. The liquid crystal is confined between two 
glass plates, both parallel to the xy plane, distance d apart. The lower plate is at rest while 
the upper one is moving in the x direction with velocity q,. The director is charac- 
terized by the polar angles 0 and cp where 0 is the angle between the director and the z 
axis and cp is the angle between the projection of the director into the xy plane and the 
x axis. 

deviate from this angle due to the boundary conditions which are imposed from the 
surrounding glass plates. 

When a3 is positive no flow alignment occurs and the situation becomes more 
complicated. Several different kinds of instabilities have been found to be exhibited 
in this case. Cladis and Torza (Couette flow) [lo, 1 I ]  and Pieranski et al. [12,13] (linear 
shear flow) have shown how, at  a critical shearing rate, the director configuration goes 
through a discontinuous transition, all the time remaining within the plane of shear. 
This instability has been called a tumbling instability in the literature. The work by 
Pieranski et al. [13] also reported that at  a larger shearing rate, the director became 
unstable with respect to fluctuations which brought it out of the shearing plane (the 
so-called ‘out-of-plane instability’); this instability was not observed by Cladis and 
Torza [lo]. This apparent contradiction is easily resolved by the study of the hydro- 
dynamic torque maps, recently introduced by Carlsson [7]. Instabilities in oscillatory 
shear flow of nematics have been reported by Clark et al. [14]. By performing a 
torsional shear flow experiment, Skarp et al. [I51 found some periodic structures 
which are reviewed in $2. 

Theoretical considerations of the shear flow of nematics in the case of positive a3 
have been given by Pikin [16], Manneville [17], Carlsson [7,18] and Hogfors and 
Carlsson [ 191. In one paper [ 181 Carlsson solves the visco-elastic equations numeric- 
ally and demonstrates that tumbling is a natural consequence of the mathematical 
structure of the Leslie-Ericksen equations. In the paper by Hogfors and Carlsson 
criteria for the thresholds of the onset of tumbling as well as the out-of-plane 
instability are derived analytically, 

It is the purpose of this paper to show how the periodic structures which are 
reported to occur in torsional shear flow for positive a3 [15] can be explained as a 
consequence of tumbling. The outline of the paper is as follows. In $2 the concept of 
torsional shear flow is discussed and the structures observed in [15] are reviewed. In 
83 we discuss the tumbling instability in view of [18,19]. We show here, by a quali- 
tative argument, how the structures which are discussed in $2 can be explained as a 
consequence of tumbling. In $4 we discuss the present experiment, which is a more 
systematic repetition of the experiment which is reported in [15]. We give a brief 
discussion of the relaxation of the system into its time-independent state and we also 
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Tumbling instability in a $owing nematic 457 

show how observation between crossed polarizers can be used as a probe of the 
stationary director configurations. In g5 we show that by making a reasonable 
assumption for the temperature dependence of the relevant material parameters we 
can explain the experimental observations also quantitatively as a consequence of 
tumbling by solving the equations governing the flow. 

2. Flow phenomena in torsional shear flow of nematics with a, > 0 
Assuming the director to be within the plane of shear, i.e. the plane spanned by 

the velocity and the velocity gradient (the xz plane in figures 1 and 2), the shearing 
torque acting upon the director is given by 

r,” = u‘(a,sin28 - a,cos2@, (1) 

where u’ = dv,/dz is the shearing rate. By aligning the director initially along the 
velocity direction (8 = 4 2 ) ,  there are two possible ways for the director to rotate 
under the influence of the shear (cf. figure 2). If the upper plate is given a shear pulse 
to the right, the director will be rotated by a shearing torque r,” = a3u’, which is 
negative for a3 < 0 (cf. figure 2 (b ) )  and positive for a3 > 0 (cf. figure 2 (c)). Since the 
rotation of the director is easily detected optically, the experiment described can be 
used to determine the sign of a3 for a given nematic substance. 

- - - 
a b C 

Figure 2. (a) Definition of the shear torque r,. (b)  Rotation of an initially parallel director 
when aj < 0. (c) Rotation of an initially parallel director when a) < 0. 

In order to determine the sign of c13 for members of the homologous series of 
cyanobiphenyls 

a small flow cell was constructed [15]. In order to obtain the necessary initial align- 
ment (director parallel to the velocity vector), the glass plates were coated with silicon 
monoxide through evaporation. The flow cell was enclosed in a small temperature 
chamber, and mounted in a conoscopic optical arrangement, as shown in figure 3. The 
conoscopic interference pattern, consisting of hyperbolas, moves in the direction of 
the velocity in case (c), and in the opposite direction in case (b). By observing the 
conoscopic pattern when the nematic is given a shear pulse, the sign of a3 is deter- 
mined unambiguously. 

It was found that c13 is negative for the first three members of the series in their 
nematic ranges (although only half of the interval, above room temperature, was 
studied for 6CB). For K B ,  on the other hand, the coefficient a3 is found to be positive 
at temperatures just above the smectic phase, diminishing gradually with increasing 
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458 T. Carlsson and K. Skarp 

Conoscopic pattern 
of hyperbolas 

Analyser 

Flow cell 
Polarizer 
Lens 

Mirror 
He Ne laser 

Figure 3. Conoscopic optical arrangement for the observation of the sign of a j .  A beam from 
a H e N e  laser is expanded and incident on the sample through a strong positive lens to 
produce a highly divergent beam. The sample, with the director oriented parallel to the 
shear velocity, is viewed between crossed polarizers. With no shear the characteristic 
interference pattern of hyperbolas for a uniaxial crystal is seen. When given a shear pulse, 
the pattern will move in either of the two directions corresponding to figures 2 (b) and (c). 

A 

laser 

Figure 4. The torsional shear flow set-up. A laser beam, expanded through a microscope lens 
B, a spatial filter C and a lens D, is deflected by a mirror E and made parallel by a 
condenser F. Interference patterns generated by the liquid crystal sample H when viewed 
in the parallel laser beam between crossed polarizers G and I are recorded directly on 
photographic film J. 

temperatures and changing sign one degree below the nematic-isotropic phase tran- 
sition. This means that 8CB has a conveniently placed temperature region between 
33.5"C and 39.1"C where a3 is positive, and an intricate flow behaviour may be 
expected as explained in the Introduction. 

The quantitative study of the flow of 8CB for positive a) was made in a torsional 
shear apparatus of the type first introduced by Wahl and Fischer [20]. The exper- 
imental set-up is shown schematically in figure 4. The nematic layer is held between 
two circular glass plates (diameter 50mm). The layer thickness can be varied using 
three micrometers, and the parallelism of the plates is checked optically by observ- 
ing interference fringes in the empty cell. The lower plate is rotated by a synchron- 
ous ten-step gear motor, giving a rotation speed for the lower plate between one 
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Tumbling instability in a flowing nematic 459 

revolution in 4.8 min and one revolution in 80 hours. Along the axis of rotation an 
expanded He-Ne laser beam (wavelength ,lo = 632.8 nm) is incident on the liquid crystal 
layer from below. The cell is mounted between crossed polarizers, and optical patterns 
in the sheared liquid crystal are viewed from above in the parallel laser light beam. 

The nematic is drawn into the cell by capillary action. To apply an a.c. electric field 
across the layers, the two glass plates have their inner surfaces coated with a very thin 
conducting film of tin oxide. The desired boundary conditions for the director 
(normal to the plates) are achieved by applying a thin layer of lecithin to the glass 
surfaces. When the lower plate is not rotating, we have therefore a nematic mono- 
domain with the director everywhere perpendicular to the plates. Viewed from above 
in the parallel laser light, the cell is dark (extinction between crossed polarizers). The 
interference patterns in the flow condition are recorded directly onto a photographic 
film, using a Pentax 6 x 7 mirror reflex camera housing. 

For very low shear rates (10-3-10-2s-1) the director profile in the liquid crystal 
layer is determined by the balance of elastic and viscous torques acting on the director. 
At higher shear rates (lO-'-l SKI )  the viscous torques dominate in the bulk, and the 
flow behaviour is critically dependent on the sign of clj. 

clj < 0: Since the shear-induced birefringence increases radially outwards, an 
interference pattern of concentric dark rings is observed. This is the case for cil < 0 
even at  high shear rates since flow alignment occurs. 

clj > 0: At low angular velocities there is no qualitative difference to the case with 
c13 negative, since elastic torques balance the destabilizing viscous torques. However, 
at higher shear rates there is no flow alignment for c13 > 0. Instead new, very regular 
director patterns are observed. 

When the rotation of the lower plate is started at the highest angular velocity 
(w = 2.18 x s- ') ,  dark rings are observed moving in slowly. These rings are not 
interference rings (confirmed by observations made without analyser), but are 
believed to be walls separating regions of different director configuration. When the 
rotation has lasted for 70 s, the appearance of the cell is as in figure 5 for 8CB at 36°C. 
If the rotation is stopped, and an a.c. field of 50V is applied for a few seconds across 
the sample, very regular concentric dark rings appear as shown in figure 6. The 
application of an electric field seems to develop a picture of the director in the cell, 
in the sense that some areas (the dark rings) will have a flow induced director profile 
that the field easily orients to the original, homeotropic condition. Other areas (the 
bright rings) will have aligned in such a way that the resulting structure scatters light 
intensity. 

In the present work we restrict ourselves to study the first tumbling, i.e. the 
boundary between the central dark disc and the first bright ring in figure 6. We 
perform this investigation very near the nematic-smectic A transition, where 
c13 % Ic121. Our aim is to begin to establish a model for the observed, intriguing flow 
patterns that is firmly based on the Leslie-Ericksen continuum theory for nematics. 

3. The tumbling instability 
Experimentally it is well established that when (under the proper circumstances) 

a shear flow experiment is performed according to figure 1, at a certain shearing rate 
the director profile undergoes a discontinuous transition from one stationary state 
to another, provided that the Leslie viscosity tlj is positive; this instability is called 
a tumbling instability. In figure 7 we sketch the outcome of a typical tumbling 
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460 T. Carlsson and K. Skarp 

Figure 5 .  The appearance of the liquid crystal cell after 70 s torsional shear (angular velocity 
w = 2.18 x 10-2s- ' ) .  The cell thickness is 650pm and the temperature is 36°C. 

Figure 6. The appearance of the cell after stopping the shear and applying an 
a.c. electric field of 50V. 
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Tumbling instability in a flowing nematic 46 1 

Figure 7. Tumbling of a nematic liquid crystal in shear flow. When the velocity oo of the 
moving plate increases above the critical velocity D,, the director profile makes a discon- 
tinuous jump from one state to  another. When this happens the maximum deflection of 
the director p, makes a finite jump. 

Figure 8. Calculated [IS] maximum tilt angle /?, as function of the velocity oo of the moving 
plate. By increasing the velocity of the moving plate we ultimately come to a situation 
where /?, is forced to make a discontinuous jump. This is the tumbling instability. The 
tumbling angle is denoted jC and the corresponding velocity vc. 

experiment. The liquid crystal is confined between two parallel glass plates distance 
d apart, one of which is moving with velocity vo . The same boundary conditions are 
used on both plates, either perpendicular or parallel, the director in the latter case 
pointing in the x direction. For shearing rates small enough for our purpose, the 
director will remain within the plane of shear throughout the experiment [19]. The 
balance of the elastic and the shearing torques results in some director profile, B(z), 
where a is the angle of deflection of the director (i.e. D = 8 for perpendicular 
boundary conditions and B = 6 - 7c/2 for parallel boundary conditions). Due to the 
symmetry of the problem, the director profile will be symmetric around the midplane 
of the sample, making the maximum tilt angle, Bm, for z = d/2. By increasing the 
velocity of the moving plate the director profile will be continuously deformed, 
exhibiting larger values of &. At a critical shearing rate however, the system under- 
goes a discontinuous transition between two states. In this transition the maximum 
tilt angle makes a jump which is of the order of several tens of degrees. 

A theoretical analysis of the tumbling instability has been performed by Carlsson 
[18], who solved the equations governing the flow numerically. Figure 8 shows the 
typical outcome of such a calculation. Plotted is the graph of the maximum tilt angle 
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462 T. Carlsson and K. Skarp 

Bm as function of the velocity vo of the moving plate. For some velocities this function 
is triple-valued. By a study of the entropy production of the system it can be proved 
that it is the lower branch which has the least entropy production and thus should be 
the physically most stable. By increasing the velocity of the moving plate, the system 
ultimately comes to a situation where B, is forced to make a discontinuous jump; this 
is the tumbling instability. The value of the maximum tilt angle when tumbling occurs 
is called the tumbling angle and is denoted by Bc. The corresponding velocity of the 
moving plate is denoted by v, . It is of major importance for the understanding of the 
tumbling instability to derive 0, and v, as functions of the material parameters of the 
nematic as well as of the boundary conditions being used in the experiment. This 
problem has been studied by Hogfors and Carlsson [19], who show that the crucial 
parameter determining the tumbling threshold is the ratio a3/l a21 which we denote 
here by 5 .  The results of Hogfors and Carlsson are now summarized for perpendicular 
and parallel boundary conditions. 

5 % 1 : perpendicular boundary conditions 

increasing value of 5 .  When 5 2 10 the-approximate relations 
Tumbling occurs for small tumbling angles. The tumbling angle decreases with an 

hold. 

5 % 1: parallel boundary conditions 

5 is the closer to 90" is the tumbling angle. 

5 z 1 : parallel or perpendicular boundary conditions 

Tumbling occurs for a tumbling angle which is slightly larger than 90". The larger 

No tumbling occurs. 

Tumbling occurs for small tumbling angles. The tumbling angle decreases with a 
5 G 1: parallel boundary conditions 

decreasing value of 5 .  When 5 5 0.1 the approximate relations 

hold. 

g 4 1 : perpendicular boundary conditions 
Tumbling occurs for a tumbling angle which is slightly larger than 90". The smaller 

5 is the closer to 90" is the tumbling angle. 
It is easy to understand how the periodic structures which are discussed in $2 as 

a consequence of tumbling can be explained. The liquid crystal used in this experiment 
was 8CB which for the temperatures used exhibits a positive a3 in the regime where 
5 G 1. In torsional shear flow the shearing rate increases radially outwards, so at  the 
same time a large range of shearing rates is covered (cf. figure 9). At some critical radii 
the shearing rate equals the critical one for tumbling. Just inside and outside such a 
critical radius the values of B, predicted by the solution of the equations governing 
the system differ considerably. For torsional shear flow, of course, elasticity will relax 
the system, thus creating twist walls situated at  the critical radii. These twist walls are 
actually seen in the experiment (cf. figure 5). 
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2 

d 

d /2  

0 

U 

\ 

R,=v,/w r=vO/w 
* 

TWIST WALL 

Figure 9. Schematic picture of the creation of twist walls in torsional shear flow when L Y ~  > 0. 
The shearing rate increases linearly outwards and adopts the critical 'tumbling value' vc 
at the distance R, from the centre. Just inside and outside this radius the Leslie-Ericksen 
equations predict a value of the maximum tilt angle p,,, which differs by a finite value. The 
system is then relaxed by elastic torques thus creating a twist wall at r = R,. Note that 
the figure is schematically drawn: the tilt of the molecules shall be imagined to  be 
perpendicular to  the paper as the molecules in torsional shear flow are tilted in such a 
way that they are contained in the tangential plane of the cylinder with the proper radius 
(= the distance of the molecules to the centre), the axis of the cylinder coinciding with 
the symmetry axis of the experimental set-up. 

The temperature dependence of 5 for 8CB is such that at low temperatures, near 
the nematic-smectic A phase transition, it diverges. Raising the temperature of the 
system 5 decreases, ultimately going through zero at which temperature a3 changes 
sign and becomes negative [21,22]. This ensures that both the limits 5: % I and 5 4 1 
are accessible experimentally. In the work presented in [15] the experiment was 
performed for one arbitrary temperature in the regime 5 < I .  In this paper we 
perform a series of experiments for different temperatures, 5 all the time being in  the 
regime 5 % 1. In the following section we give the experimental details and in $5 we 
show that by solving the equations governing the flow we are able to predict the 
critical radius for which the first tumbling line occurs. 

4. The present experiment 
In this section we study the director behaviour until the first tumbling sets in, as 

illustrated in figure 7. The nematic 8CB was studied very close to the smectic A- 
nematic transition temperature (33.5"C). In this region ci3 is positive, and moreover 
c13 % la2[ .  As discussed in $3, this means that the director will be tilted, by a rather 
small angle ( 2 30") from the homeotropic initial orientation before tumbling occurs. 
A small director tilt means a small effective optical anisotropy leading to a more easily 
resolved and evaluated optical interference pattern. 

To discuss optical interference of polarized light in the flowing nematic, consider 
the director field shown in figure 10(a) which is typically obtained in a shear flow 
experiment. The nematic is a birefringent uniaxial medium characterized optically by 
the ordinary (no) and extra-ordinary (n,) refractive indices (n, > no). The director a 
is assumed to be equivalent to the local optic axis, as shown in figure 10 (b). The light 
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464 T. Carlsson and K. Skarp 

V 
L light ray 

ir, o.a.(tl) 

a b 

Figure 10. (a) Schematic picture of the director profile in the sheared nematic. (b )  Definition 
of optical quantities. The light is incident along the z axis and the shear velocity is along 
the x axis. The director A is the local optic axis (0.a.). The director makes a n  angle 0 with 
the z axis. 

is incident along the z axis (normal incidence), and the optic axis makes an angle 6' 
with this axis. The projection of the index ellipsoid shown has a long axis nIl (along 
z') and a short axis n ,  = no (along x'). The equation for the index ellipse is 

Z f 2  X / 2  
- + -  = 1 .  
n: n: 

(4) 

The quantity observed experimentally is the effective optical anisotropy n,(e) - no. 
To obtain this, we express the index ellipse in the xz coordinates through the relations 

I x' = xcos8 + zsind, 

z' = zcos0 - xsin9. 

Insertion of this into equation (4) gives 

($+ $)cos28 + ($ +$)sin2d + ($- - $)2xzcosRsinB = 1. (6) 

The extraordinary refractive index is the interception between the x axis and the 
ellipse ( z  = 0, x = n,) yielding 

or 

To determine the mean optical anisotropy we integrate across the sample 
2 4 2  

(ne - no> = 2 5, (ne(e> - no) dzs 

(7) 

(9) 

The function e ( z )  is given by solving the hydrodynamic equations as discussed in 
detail in the following section. 

The phase difference 6 between the extraordinary and the ordinary light ray is 

(10) 
2?T 
2" 

6 = - ( n ,  - no)d ,  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
5
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Tumbling instability in a flowing nematic 465 

where AD = 632.8 nm is the wavelength of the incoming laser light beam and d is the 
thickness of the liquid crystal layer. The extinction condition when the sample is 
viewed between crossed polarizers is 

6 = 2nm. (1 1) 

In the torsional shear flow apparatus, because of the circular symmetry, the inter- 
ference pattern will have the form of concentric dark rings, and m denotes the ring 
number, beginning with m = 0 at the centre. Finally, we find 

making it possible to relate a shear induced director deformation O(z) to a certain ring 
number rn for a given liquid crystal sample with known values of nll and n, . In the 
present context, we are interested in Qz), and the corresponding ring number m,, at 
the critical shear rate where the first tumbling occurs. The critical shear rate corre- 
sponds in the torsional shear flow apparatus to a critical radius R,. A typical 
appearance of the sample after 90 min torsional shear is shown in figure I I .  

Figure 1 1 .  Photograph showing the critical radius where the first tumbling takes place 
( T  = 33.78"C). 

Experimentally, it is important to establish that the observation of R, and m, at 
a certain temperature is made in a steady-state situation for the director. In figure 12 
we show a plot of R, versus time; it is seen that after about 30 min the critical radius 
is time-independent. A sample of thickness d = 600pm was prepared with 8CB. The 
tumbling instability was studied near the nematic-smectic A transition, in the tem- 
perature range 33.5"C to 334°C. In this region c1, % ItlZI. Photographic pictures 
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L" 

E '  
E .  
si. 
3 '  
0 .  
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a 

a 

a 

10- 

A 

0 
c I 
I 

01 

- . .  8 . .  

Figure 12. The critical radius for tumbling R, as a function of time. Observation of R, was 
normally done after 1 hour, when the tumbling boundary had relaxed to its stationary 
state. 

similar to figure 11 were taken at six temperatures in this region, and analysed for R, 
and m,. In this experiment an angular velocity of the lower plate of 4.4 x 10-4s-1 
was used. Since R,w/d gives the critical shear rate for tumbling, and m, can be related 
to the director profile 8(z)  through the optical formula, we are now in a position to 
evaluate the experimental observation of the tumbling in terms of the predictions of 
the Leslie-Ericksen continuum description. This is the purpose of the following section. 

5. Theoretical analysis 
The distribution of the dark interference rings of figure 11 can be calculated from 

equations (9) and (12) provided that the director profile 8(z)  is known. The task of 
calculating 8(z) has been solved [18,23] and we now summarize the results of these 
calculations. 

The equations governing the director profile 8(z)  and the velocity profile v ( z )  in 
the stationary state are given by 

z - dv 
dz 
- -  

q2 - (a2 + a,)cos28 

Equation ( 1  3) expresses the balance of elastic and viscous torques while equation (14) 
is the Navier-Stokes equation applied to the present problem. The function h(8) 
depends on the elastic splay and bend constants, K, and K,, according to 

h(8 )  = K,sin28 + K,cos28, (15) 

while v 2  is one of the Miesowicz viscosities 
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Tumbling instability in a Jlowing nematic 467 

and z is the shearing force per unit area acting on the moving plate, the velocity of 
which is assumed to be vo. In equation (14) we have also made the approximation 
a, = 0, an approximation which is justified in [18]; this approximation was first 
suggested by MacSithigh and Currie [24]. Assuming homeotropic boundary con- 
ditions we solve equations (13) and (14) arriving a t  an implicit relation governing the 
director profile 

where z and F(9)  are given by 

In these equations we have introduced the sample thickness dand  the tilt in the middle 
of the sample 9, = 9(d/2), which is the maximum deflexion of the director. The 
velocity profile is given by 

z 
v(z )  = dz. f q2 - (a2 + ff3>cos29(4 

Consequently the velocity vo of the moving plate is given by 

z 
vo = 2v(4) = 2j: dz . 

q 2  - (a2 + a3)cos2B(z) 

In a torsional shear flow experiment the velocity vo of the liquid crystal a t  the 

(22) 

moving plate increases linearly with the distance r to the centre of the plate 

vo = r o .  

The velocity profile O(z) for a given value of vo is obtained from equations (17)-(21). 
Substituting this into equations (8), (9) and (12) enables us to calculate the location 
of the dark interference rings shown in figure 11. From equations (17)-(21) we can 
also calculate the value of the maximum tilt angle, Om, as function of the velocity vo 
of the liquid crystal at the moving plate. A typical plot of O,(vo) is shown in figure 
8. From this we can determine the tumbling velocity v, according to the discussion of 
$3. The corresponding critical radius R, is then given as R, = v,/w. For a given set 
of material parameters a2, a3, a4, C L ~ ,  K,, K3, n,, and n, we can therefore calculate R, 
as well as the number of interference rings m, which will be contained within the disc 
r < R,. In this analysis we have neglected the elastic twist torque which develops 
because 9(r)  increases radically outwards in the geometry for which the experiment is 
performed. It has, however, been found in the analysis of previous torsional shear 
flow experiments [20] that the neglect of this torque is a good approximation for the 
case where 9(r) is a smooth function. At r = R,, where our analysis predicts 9(r) to 
be a step function, this torque will, of course, relax the system by creating a twist wall 
of a certain thickness. The crucial thing is, however, that the prediction of the location 
of this twist wall, which is essential for our analysis of the experiment, can be expected 
to be unaffected by the use of this simplified model. 
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Figure 13. The viscosity coefficients (a) and the elastic constants (b) of 8CB. The data are 
taken from the measurements by Kneppe et al. [25,26] (a) and Karat and Madhusudana 
~ 7 1  (b). 

In order to solve equations (17E(21) numerically we must first determine the 
temperature dependence of the viscosity coefficients and the elastic constants which 
enter the equations. Measurements of the viscosity coefficients of 8CB have been 
performed by Kneppe et al. [25,26] while the elastic constants have been measured by 
Karat and Madhusudana [27]; their results are plotted in figure 13. As we are 
interested in the value of the material parameters in the temperature interval between 
33.5"C and 33~8°C we notice however that no experimental data are available and so 
we have to extrapolate the graphs as the smectic A phase is approached. The viscosity 
coefficients, a, and a4, are seen to exhibit a weak temperature dependence in the 
temperature interval of interest while a3 and a, are seen to diverge as the smectic 
A-nematic transition temperature TSAN is approached. This is in accord with other 
experimental observations [21,22] as well with theoretical predictions [28,29]. We 
make therefore the following assumptions 

a2 = -0*07Pas, 

f f 3  = 5 ffk 
a4 = 0*06Pas, 

a, = a3. 
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The ratio 5 = a3/1 azl is assumed to diverge according to some critical exponent y as 
the temperature approaches TSAN. The value of y is however immaterial for our 
purpose. Of the elastic constants we are only interested in K, and K3.  Of these K,  is 
almost constant close to TSAN while K3 exhibits a critical divergence [30,31]. To make 
the simplest possible assumption we take the critical exponent of the divergence of 
K = KJK, to be the same as that of 5 and write 

From equations (23) and (24) we find 

In figure 13 we see that at the temperature where 5 = 1, the value of K is approxi- 
mately 1.65. This suggests to us that K,/(~ is 1.65 and the assumption made for the 
elastic constants is 

K, = 1.45 x 10-"N, 

K3 = 1.65(K,. 

We further need the values of the refractive indices n ,  and n,, close to the phase 
transition. These have been measured by Karat and Madhusudana [32] and are found 
to be approximately constant in the temperature interval of interest here (wavelength 
of incident light, 1, = 632.8nm) with 

n, = 1.517, 

rill = 1.666. 

0 10 20 30 40 50 
CRITICAL RADIUS/mm 

Figure 14. Critical ring number rn, as function of the critical radius R, = v,/w for which 
tumbling occurs. The solid line represents the theoretical graph computed by the use of 
the Leslie-Ericksen hydrodynamic theory of nematics and shows how rn,(R,) varies as < = a3/l  a2J is varied from 2 to 30. The dots are the experimental data which was obtained 
at six different temperatures 33.51°C, 33.57"C, 33.63"C, 33.68"C, 33.71"C and 33.78"C. 
The temperature decreases when following the graph from left to right. 
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For a given value of <, i.e. for a given temperature, we are now in the position to 
calculate R, and m, thus giving us the functional dependence m,(R,) parametrized by 
4 .  The outcome of such a calculation is shown by the solid line in figure 14; in this 
graph 4 = 2 in the upper left part increasing to the value 5 = 30 in the lower right 
part. The dots in the same figure represent the measured values of m, and R, for the 
six temperatures 33.51"C, 33.57"C, 3363"C, 33.68"C, 33.71"C and 33.78"C following 
the graph from right to left. We note the good agreement between the experimental 
points and the theoretically calculated curve. 

6. Discussion 
In the present work we have studied the torsional shear flow in a nematic with 

a3 > 0, and in addition a3/laZl S 1. In this regime tumbling occurs for small tilt 
angles. This makes the experiment easier and more accurate than for the a3/1a21 % 1 
regime, where tumbling occurs for tilt angles slightly above 4 2 .  In both cases we refer 
to perpendicular boundary conditions. The reason is that the effective optical aniso- 
tropy (n,(O) - n o )  in the former case is much smaller, and thus the critical ring 
number m, is smaller. For m, of 100, as in the a3/lazl 4 1 regime, the density of 
interference fringes is very high, and consequently the accuracy with which m, can be 
determined decreases. 

The special case a3/la,l = 1 leads to a situation where no tumbling occurs. This 
can be seen from equations (13) and (14), which simplify in such a way that the 
resulting solution for 8, as a function of the shear velocity does not show the 
multi-valued states leading to tumbling (cf. the curve for T = 38°C in figure 7 of [8].) 
This curve corresponds to 5 = 0.57, and indicates that there is an interval around 
< = 1 (and a corresponding temperature interval) where tumbling does not occur. 

As can be seen from equation ( 2 ) ,  the elastic torques become more important 
relative to the shear torque near the nematic-smectic A transition. This means that 
the critical radius R,, where tumbling occurs, should increase with increasing value of 
5: since K3 and a3 are assumed to diverge homomorphically at the phase transition. 
This behaviour is also observed as is indicated in figure 14. The effect can be observed 
to its full extent in the smectic A phase itself, where it was not possible experimentally 
even with the highest shear rate to induce any deformation of the homeotropic 
director. 

As we have discussed in the Introduction, Pieranski et al. [I31 reported the linear 
shear flow of nematics with positive a3 to be unstable with respect to fluctuations 
which bring the director out of the shearing plane. The fact that we observe a sequence 
of walls as shown in figure 6 shows that the out-of-plane instability does not occur in 
torsional shear flow; this can be understood using an argument due to Chandrasekhar 
[33]. In torsional shear flow the liquid crystal is confined between two parallel, circular 
glass plates; one at  rest while the other one is rotating. If the instability threshold is 
reached the director would start to rotate out of the plane of shear. This sudden 
rotation is coupled to a hydrodynamic flow, commonly called back flow [34]. In this 
case the back flow would be radial, thus creating a pressure drop in the centre of the 
sample. This pressure drop would suppress the back flow and thereby act to stabilize 
the director against fluctuations out of the plane of shear. 
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